LOKNETE DR.BALASAHEB VIKHE PATIL (PADMABHUSHAN AWARDEE) August 2004

PRAVARA RURAL EDUCATION SOCIETY'S

ARTS, COMMERCE & SCIENCE COLLEGE, ALKUTI

ID. No. PU/AN/ACS/78/2004 College code No.757

A/p.Alkuti, Tal.Parner, Dist.Ahmednagar.Pin-414305

EmailID: principal.acsalkuti@pravara.in

Phone: (02488) 250457

Program Objectives

B.Sc. Physics (2019 CBCS Pattern)

Sr.	Program	Program Objectives	Program Specific Objectives
No.			
1	B. Sc.	 To provide in depth 	1. After completion of
	Physics	knowledge of scientific and	program, students will be
		technological aspects of	able to have in-depth
		Physics ·	knowledge of basic
		 To familiarize with current 	concepts in Physics.
		and recent scientific and	2. Students will be able to
		technological developments	apply the laws of Physics
		 To enrich knowledge 	in real life situations to
		through problem solving,	solve the problems.
		hand on activities, study	3. Students develop aptitude
		visits, Projects etc.	of doing research through
		 To train students in skills 	undertaking small projects.
		related to research,	4. Student will have set his
		education, industry, and	foundation to pursue higher
		market.	education in Physics.
		 To create foundation for 	5. After completing the
		research and development	program student will have
		in Electronics	developed interdisciplinary
		 To develop analytical 	approach and can pursue
		abilities towards real world	higher studies in subjects
		problems	other than Physics
		• To help students build-up a	
		progressive and successful	
		career in Physics	

Course Outcomes

B.Sc. Physics (2019 CBCS Pattern)

Sr. No.	Course	Course Outcomes
1	F.Y. B. Sc. 1. Mechanics and Properties of Matter	 Demonstrate an understanding of Newton's laws and applying them in calculations of the motion of simple systems. Use the free body diagrams to analyses the forces on the object. Understand the concepts of energy, work, power, the concepts of conservation of energy and be able to perform calculations using them Understand the concepts of elasticity and be able to perform calculations using them. Understand the concepts of surface tension and viscosity and be able to perform calculations using them. Use of Bernoulli's theorem in real life problems. Demonstrate quantitative problem solving skills in all the topics covered.
	2.Physics Principles and Applications	 To demonstrate an understanding of electromagnetic waves and its spectrum. Understand the types and sources of electromagnetic waves and applications. To understand the general structure of atom, spectrum of hydrogen atom. To understand the atomic excitation and LASER principles. To understand the bonding mechanism in molecules and rotational and vibrational energy levels of diatomic molecules. To demonstrate quantitative problem

	solving skills in all the topics covered.
3.Physics	Acquire technical and manipulative
Laboratory-1A	skills in using laboratory equipment,
v	tools, and materials.
	2. Demonstrate an ability to collect data
	through observation and/or
	experimentation and interpreting data.
	3. Demonstrate an understanding of
	laboratory procedures including safety,
	and scientific methods.
	4. Demonstrate a deeper understanding
	of abstract concepts and theories
	gained by experiencing and visualizing
	them as authentic phenomena.
	5. Acquire the complementary skills of
	collaborative learning and teamwork
	in laboratory settings.
4.Heat and	1. Describe the properties of and
Thermodynamics	relationships between the
·	thermodynamic properties of a pure
	substance.
	2. Describe the ideal gas equation and its
	limitations.
	3. Describe the real gas equation
	4. Apply the laws of thermodynamics to
	formulate the relations necessary to
	analyze a thermodynamic process.
	5. Analyze the heat engines and calculate
	thermal efficiency.
	6. Analyze the refrigerators, heat pumps
	and calculate coefficient of
	performance.
	7. Understand property 'entropy' and
	derive some thermo dynamical
	relations using entropy concept.
	8. Understand the types of thermometers
5 Floatricity and	and their usage.1. Demonstrate an understanding of the
5.Electricity and	electric force, field and potential, and
Magnetism	related concepts, for stationary
	charges.
	2. Calculate electrostatic field and
	potential of simple charge distributions
	potential of simple charge distributions

		using Coulombia law and Cougain law
		using Coulomb's law and Gauss's law.
		3. Demonstrate an understanding of the
		dielectric and effect on dielectric due
		to electric field.
		4. Demonstrate an understanding of the
		magnetic field for steady currents
		using Biot-Savart and Ampere's laws.
		5. Demonstrate an understanding of
		magnetization of materials.
		6. Demonstrate quantitative problem
		solving skills in all the topics covered.
	6.Physics	1. Acquire technical and manipulative
	Laboratory-1B	skills in using laboratory equipment,
	·	tools, and materials.
		2. Demonstrate an ability to collect data
		through observation and/or
		experimentation and interpreting data.
		3. Demonstrate an understanding of
		laboratory procedures including safety,
		and scientific methods.
		4. Demonstrate a deeper understanding
		of abstract concepts and theories
		gained by experiencing and visualizing
		them as authentic phenomena.
		5. Acquire the complementary skills of
		collaborative learning and teamwork
		in laboratory settings.
2	S. Y. B. Sc.	After the completion of this course
	4.35.3	students will be able to
	1. Mathematical	1. Understand the complex algebra
	Methods in Physics I	useful in physics courses
		2. Understand the concept of
		partial differentiation.
		3. Understand the role of partial
		differential equations in physics.
		4. Understand vector algebra
		useful in mathematics and
		physics
		5. Understand the singular points
		of differential equation.
	2. Electronics I	1. Apply laws of electrical circuits to
	2. Diccionics I	different circuits.
		2. Understand the relations in electricity
		2. Understand the relations in electricity

	3. Understand the properties and working
	of transistors.
	4. Understand the functions of
	operational amplifiers.
	5. Design circuits using transistors and
	operational amplifiers.
	6. Understand the Boolean algebra and
	logic circuits.
3.Physics	Whatever the students learned in their
Laboratory-2A	theory course of electronics. They
	need to verify the concept. This course
	will help to student to verify the
	concept from theory.
4. Oscillations,	1. Solve the equations of motion for
Waves and Sound	simple harmonic, damped, and forced
	oscillators. Understand the physics and
	mathematics of oscillations.
	2. Formulate these equations and
	understand their physical content in a
	variety of applications,
	3. Describe oscillatory motion with
	graphs and equations, and use these descriptions to solve problems of
	oscillatory motion.
	4. Explain oscillation in terms of energy
	exchange, giving various examples.
	5. Solve problems relating to undammed,
	damped and force oscillators and
	superposition of oscillations.
	6. Understand the mathematical
	description of travelling and standing
	waves.
	7. Recognize the one-dimensional
	classical wave equation and solutions
	to it.
	8. Calculate the phase velocity of a
	travelling wave.
	9. Explain the Doppler Effect, and
	predict in qualitative terms the
	frequency.
5. Optics	1. Acquire the basic concepts of wave
	optics.
	2. Describe how light can constructively

and destructively interfere.
3. Explain why a light beam spreads out
after passing through an aperture.
4. Summarize the polarization
characteristics of electromagnetic
waves.
5. Appreciate the operation of many
modern optical devices that utilize
wave optics.
6. Understand optical phenomena such as
polarization, birefringence,
Interference and diffraction in terms of
the wave model.
7. Analyze simple examples of
interference and diffraction
phenomena.
8. Be familiar with a range of equipment
used in modern optics.
Whatever the students learned in their
theory courses such as wave's
oscillations and sound and optics.
They need to verify this concept. This
course will help to student to verify
the concept from theory.